Ciência de dados é um processo que emprega técnicas estatísticas e computacionais para analisar grandes bases de dados. A etapa de pré-processamento, onde as bases de dados relevantes devem ser reunidas e adequadamente formatadas, costuma ser a mais trabalhosa, ocupando tipicamente 80% do tempo consumido. É nesta fase que são realizadas as tarefas de seleção, limpeza e transformação dos dados, comumente referenciadas como atividades de Data Wrangling, Data Munging ou Data Preparation. A biblioteca pandas foi especialmente projetada para oferecer o suporte ao processo de Data Wrangling e ela já se consolidou como a biblioteca para ciência de dados mais utilizada no ambiente Python.
Neste livro, Eduardo Corrêa aborda a pandas sob uma perspectiva profissional, explicando como utilizá-la para resolver problemas práticos e, muitas vezes, difíceis de Data Wrangling. Você aprenderá a teoria com um projeto prático, que envolve o uso da pandas como ferramenta para viabilizar a execução das atividades de seleção, estudo, limpeza e transformação de uma base de dados real. O projeto mostrará o passo a passo para realizar o pré-processamento desta base de dados, que será então utilizada como fonte para a criação de um modelo de Machine Learning, mais especificamente, um modelo de classificação de dados.