Categorias Ver Todas >

Audiolivros Ver Todos >

E-books Ver Todos >

Del Cálculo Infinitesimal A Las Matemáticas Modernas

Del Cálculo Infinitesimal A Las Matemáticas Modernas

Sinopse

Esta obra es una historiografía que inició en 2009 buscando identificar una ontogénesis del cálculo infinitesimal desde su dos grandes ramas: el Cálculo Diferencial y el Cálculo Integral. En dicho barrido histórico se observaron rupturas epistemológicas que llevaron a la construcción de nuevos paradigmas, nuevos conceptos que en algunas ocasiones permitieron responder las preguntas de la época, y en otros la generación de nuevas ramas de las matemáticas. Situación que influyó en la forma como se hacían las matemáticas. La búsqueda de rigor en los procesos que se creaban resultó en una estructura compleja, compuesta por diversas ramificaciones que dieron origen a lo que hoy conocemos como las Matemáticas Modernas. Durante la historiografía, permítanme la analogía, se encontraron muchos tipos de caminos, algunos lisos, pavimentados por los que fue fácil recorrer distancias y observar procesos de construcción teórica. Hubo otros áridos, desérticos y de difícil tránsito, en los que fue necesario acudir a fuentes secundarias de historia de la matemática para tratar de allanar esos tortuosos senderos. Hubo momentos en los que se halló respuesta, en otros se profundizó el abismo al punto que, en esas ocasiones, los caminos eran inhóspitos, ciegos y con el ánimo de poder avanzar fue necesario acudir a fuentes primarias de información para poder comprender las situaciones y entender la generación de nuevos conceptos, de nuevas formas de hacer matemáticas. Entre esas fuentes primarias fue necesario conocer los trabajos de Descartes, Euler, Gauss, Fourier, Cantor, Lebesgue, Hilbert, Banach, Newman, Dieudonné, por nombrar algunos, con el objeto de clarificar la construcción y evolución de conceptos que derivaron en nuevas ramas de las matemáticas, entre ellas: análisis matemático, análisis complejo, análisis funcional, topología, topología algebraica y el más reciente, el análisis no estándar. Debido a la poca literatura existente en Educación Matemática dedicada a la educación superior, que trate temas propios del Pensamiento Matemático Avanzado, motivó adelantar esta investigación, desde una compilación de temas relacionados con la epistemología de cálculo infinitesimal con el objeto de ofrecer estrategias didáctico-metodológicas a los que desean aprender y a los que enseñan esta rama de las matemáticas desde la educación secundaria y particularmente la formalizan en la educación superior. La complejidad al enseñarlas y las dificultades identificadas y reportadas en la escasa literatura existente al momento de aprenderlas, motiva el interés en desarrollar este tipo de trabajo que hoy se pone a su consideración, con el ánimo que tanto los que aprenden como los que enseñan, conozcan que la ontología del cálculo tiene intrínseca una complejidad epistémica en sus conceptos y estructuras matemáticas, situaciones que hacen complejo enseñarlas y aprenderlas, factores que muchas veces se desconocen por diversas razones. El fracaso escolar que reportan las estadísticas de varios países, particularmente latinoamericanos, en los estudiantes que terminan su educación secundaria y en los que inician la educación superior, unido a la alta tasa de deserción escolar universitaria, son debidos a fracasos en el aprendizaje del cálculo (diferencial e integral). La repitencia o el abandono de la universidad por estos factores mencionados al momento de estudiar estos cálculos no es gratis, ni por descuido de los estudiantes o de los procesos de enseñanza, que regularmente están centrados en el paradigma formal-mecanicista, que desconoce la existencia de una complejidad epistémica en las matemáticas mismas, que hace necesario el conocimiento y desglose de conceptos, procesos y temáticas que se pretenden seguir para que los estudiantes comprendan, aprendan y desarrollen competencias matemáticas que apliquen en su quehacer profesional.